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Anomalous scaling of a triple correlation function of a randomly advected passive scalar
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For a short-correlated Gaussian velocity field the problem of the passive scalar with the imposed constant
gradient is considered. It is shown that the scaling of the three-point correlation function is anomalous. In the
limit of large dimension of space, the anomalous exponent is calculatgsl1063-651X96)02610-4
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We consider the problem of a passive sc&@aadvected VB(r)=Vy6*F—K*P(r). (5)
by & correlated in time velocity field [1]. The scalar obeys
an equation HereV, is a large constant having the meaning of average

value ofv?, K% is the eddy diffusivity tensor
O +v-VO=xAOB. (1) di1
a - + — 7 a o

Here k is the molecular diffusivity, which determines the K*(r)=Dr"” 2—y r2gh—rerf, )
behavior of the passive scalar for small distances. The veloc-
ity v is a random function to be defined below. There is nowhered is the dimension of space, andis parameter that
pumping of a passive scalar into the system, but instead determines the scaling of the velocity pair-correlation func-
condition on the mean value of a passive scalar is imposedion. The parametey is supposed to be between zero and 2.

namely, it has a constant gradientn space, The powerlike behaviof6) is valid up to some ~L, where

L is the correlation length of velocity. For-L the correla-
=g-r+6. (2)  tor VP decreases and goes to zera as>. This means that

K(r)=V,6%f for r>L. As we will see later, the precise

Here 6 designate the fluctuating part of a scalar field form of this decrease is not important. The relation between
constants is

(6)=0. 3)
2- 2=y
- . . Le Y=———F—V,. (7)
By () we mean statistical average. This problem was previ- D(d+1—1v)

ously considered by Shraiman and Siggid 2y, where they
derived the equation for the-point correlation function and We assume that the cutoff lengthis d independent, so that
found the pair correlation function. I[8,4] they proposed a V, explicitly depends on space dimensionality.
phenomenological equation describing thepoint correla- Our aim is to find the scaling exponent of the triple cor-
tion functions of a passive scalar. relation function deep inside convective interval, that is, for

The description of this problem, analogous to Kolmog-rq<<r<L, wherer, is a diffusion scale
orov dimensional analysis, gives the correct answer for the
two-point correlation functiorf(r,)=(6(r,)6(r,)). How- 2 y_2K(2=7y)
ever, it has a deviation from experimental daf&g6] for D(d-1) -
higher-order correlation functions. We will concentrate on
such a deviation for the three-point correlation functionThe conditionr>r4 implies that we can disregard diffusion
I'={(6(r,)0(r,)6(r3)), which is the lowest that has anoma- [8].
lous behavior(i.e., different from the one obtained by a di- From (1) one can derive the equation for tié¢h-order
mensional estimaje The imposed gradient of the mean correlation functior{1,2]
value looks like breaking of translational and rotational in- .
variance. However, the correlation functions ébfire trans- L£{(O; --0.)=0. 9)
lational invariant and the gradient of the mean value of a
scalar field will effectively play the role of anisotropic pump- Here the operato€ contains operators of both turbulent and
ing. There is a significant difference between this problerrimolecular diffusion
and the problem with isotropic pumping. Due to the chosen
\cjiarre]:i(':st;]on in space, the odd order correlation functions do not = %E Vaﬁ(rij)virlvjﬁ+ KE Viz_ (10)

. i,

We assume the velocity field to be Gaussian arwbrre-

lated in time[1]. Therefore the statistics af is completely ~We will see that the scaling of the pair-correlation function is

®

determined by the pair-correlation function normal. For the three-point correlation function the presence
of zero modes of the operatdr makes the scaling anoma-
(0*(ry,t)vP(r,,1)) =V (r ) 8(t,—ty), (4 lous, which is different from the 4y obtained from
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Kolmogorov-like estimates. The exception is the special case Unfortunately, the number of variables is too large to
when the scaling exponent of the velocity correlation func-solve Eq.(15) exactly at arbitraryy andd. There are several
tion y is zero[2]. Note also that for the scaling exponent cases when the problem can be solved exactly: the cases of
equal to 2 the operataf has a singularity and special treat- y=0 [9,10,3, larged [8], andy=2 [11]. After solving the
ment is needed7]. Following [8], we will calculate the problem exactly at these special values of parameters one
anomalous scaling exponent in the limit of large For ~ can develop the perturbation theory for the small deviations
d—o the problem can be solved exactly. Then, finding cor-from these values. In the cases of largeand y=2 this
rections in the next order overdl/one can calculate the perturbation theory can be performed. The casg-eD cor-
anomalous exponent of the three-point correlator. responds to the strongly degenerate perturbation theory. We
To calculate the triple correlation function one shouldWwill solve Eq.(15) in the limit of larged, where perturbation
know the two-point correlator since it explicitly enters the theory is regular. To do this one should keep in the operator
equation. The equation for the two-point correlation function(10) only terms that are the largest at lardeand solve the

is equation. Then one can look for a correction due to a finite
R R value of the parameterd/Justification of this procedure can
LPF(r)=—L[(g-r1)(g-ry)]. (1)  be found in[8]. i
. In variables(17) the main part of the operatat can be
The operatorP) may be written as written as
- D(d-1 2
[:(P):(zfy)rl—d(}lr(rd*'l_?’ar), rqg<<r<L. (12 EOZSTD;/Z rilj_mrij- (18)
i<]

We should match the solution obtained rat L with the _ _ _
solution atr >L. For this region the operator has the form For larged andr<L one can substitut€l4) into the right-

R hand side of15). The result is

LP=Vort=d9,(rd=1g,). (13

g2 L277

Since we will consider the three-point correlation function at PY=— Ty[(rlz' o)rl, 2(rizY=rasM1. (19
large d, we calculate the pair-correlation function in the
same limit(it can be found exactly as wgllThe solution of

Eq.(11) atr<L andd>1 that satisfies the boundary condi- Thus, in the first step of the iteration procedure we should
tion atr~L is solve the equation

. S glL%[2—y 1[r|” 1[r)\?
O="4"12y, H\C] *2\T) |

(14) Lol'p= (D(lg),3+ q)(l%),2+ ‘D(zos),l- (20)

] ) o ) ~ The solution can be found by integrating over the character-
At r>L the pair correlation function is zero in the main istics of the operatof18). An important question is that of
prder of the 1d expansion. Eor deep |n3|de the convective boundary conditions. We should supply BQ0) with the
interval ther? term is small in comparison to”. Therefore  poundary conditions at zero and infinity. However, this equa-
we see that the scaling behavior of a two-point correlatiorjon is of first order and only one condition can be satisfied.
function is normal, as shown by Shraiman and Sid@ih  since we omitted the diffusion part of the operat®), we
Note that(14) is isotropic in the convective interval. The gnould pose the only conditioR—0 asr—. One can
anisotropic part has a scaling exponent larger thaand  show([8] that solution obtained in this way can be matched
therefore in the convective interval it is much smaller. Be-yjith the diffusion region.
sides, it has additional factordLivith respect to the isotropic One can write the following solution d®0), which sat-

part. _ _ _ _ isfies the above boundary condition:
For the three-point correlation function one can derive the

equation oy (e
- Fo=— _f dtd ) dT12,T13.723.(112:9). (113 0)]
LT =D 3+ D35+ Po3;y, (15 yDd*Jo 12

where + (permutationg (21)

P 155= Vif(r)gP[K*A(r 19 —K*(r59)]. (16)  where
Since the preferable direction exists in the problem, then ?ij(t)=(fi7j+t)1/y- (22)

depends on five independent variables in any dimension of

spaced>2. It is convenient to choose the set . . .
P The main contribution td"g comes from the regioh<L?".

T=T(F 12" 13:F 23, F1- G T 25 ). (17)  Therefore we can use the expressit8) for Y, and write
L as the upper limit of the integration. The precise form of
However, it is impossible to find symmetric parametrizationthis cutoff is not important since the integral behaves loga-
because of the identity,+ri3+r,3=0. rithmically on the upper limit. Finally, we get
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gL?” LY 1o 22-y)?_ (L
F0=Wr(r12-g) o dt(ri/2+t) Y F1=T20In T . (27)
X[(t+r79%7 1= (t+r2)?" 1]+ permutations. We can continue this iteration procedure and find the main
23 logarithmic subsequence. As a result, we obtain the series
A7 (L
The integral(23) cannot be calculated analytically for arbi- I'=Zo 1+ Aln| -] +—-In% — |+ 1=Zo
trary y. However, we are interested In in the convective
interval, that is, forr<L. There main contribution t¢23) L\4
comes from largg. Expanding the integrand overL, we =Zo| =] —Zo, (28)

find the following result in the main logarithmic order:
where the anomalous exponeft that makes a deviation

2(2— L ina i
Ty= (2= In(—) Zo, (24) from normal scaling is
d r
A= M (29
wherer in the logarithm is of order;; and - d
2 27 We see that the solution consists of two parts. The second
ZO:W[(HZ'g)(rZS_r%:’.)_"(rlS' 9)(ri;—rks) term on the right-hand side of28) has normal scaling
v+ 1. One can check that it is a partial solution of the inho-
+ (o 9)(r,—ris] (25 mogeneous equatioil5). However, if it were alone, the so-

. _ lution would not satisfy boundary conditions. To ensure it
Note thatZ, is necessarily a zero mode of the operdf).  we have the first term ii28). One can see that this contri-
Itis also worth mentioning tha, scales ag+1 and thisis  pution gives anomalous scaling with the exponent

the only zero mode of the operatgg with such scaling. y+1—A. This term is the solution of the homogeneous
Now we should find a correction t@4) in the next order  equationI'=0 and therefore is the zero mode of the opera-
over 1H. To do this we should solve the equation tor £ [8,11,3.

To conclude, we have shown that the three-point correla-
tion function has the scaling exponept 1— A, which dif-
fers from naive dimensional estimates. This exponent was
analytically calculated in the leadingdLbrder.

z0F1= _zlro. (26)

Here El is the part of operato(l0) that is proportional to
d. In Eq. (26) we disregard terms that come from the right-
hand side of Eq(15) since they do not contain the logarithm.  We are grateful to M. Chertkov, G. Falkovich, I.

Solving Eq.(26), we find for the main logarithmic term Kolokolov, and V. Lebedev for fruitful discussions.
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