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For a short-correlated Gaussian velocity field the problem of the passive scalar with the imposed constant
gradient is considered. It is shown that the scaling of the three-point correlation function is anomalous. In the
limit of large dimension of spaced, the anomalous exponent is calculated.@S1063-651X~96!02610-4#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j

We consider the problem of a passive scalarQ advected
by d correlated in time velocity fieldv @1#. The scalar obeys
an equation

] tQ1v•¹Q5kDQ. ~1!

Here k is the molecular diffusivity, which determines the
behavior of the passive scalar for small distances. The veloc-
ity v is a random function to be defined below. There is no
pumping of a passive scalar into the system, but instead a
condition on the mean value of a passive scalar is imposed,
namely, it has a constant gradientg in space,

Q5g•r1u. ~2!

Hereu designate the fluctuating part of a scalar field

^u&50. ~3!

By ^& we mean statistical average. This problem was previ-
ously considered by Shraiman and Siggia in@2#, where they
derived the equation for then-point correlation function and
found the pair correlation function. In@3,4# they proposed a
phenomenological equation describing then-point correla-
tion functions of a passive scalar.

The description of this problem, analogous to Kolmog-
orov dimensional analysis, gives the correct answer for the
two-point correlation functionf (r 12)5^u(r 1)u(r 2)&. How-
ever, it has a deviation from experimental data@5,6# for
higher-order correlation functions. We will concentrate on
such a deviation for the three-point correlation function
G5^u(r 1)u(r 2)u(r 3)&, which is the lowest that has anoma-
lous behavior~i.e., different from the one obtained by a di-
mensional estimate!. The imposed gradient of the mean
value looks like breaking of translational and rotational in-
variance. However, the correlation functions ofu are trans-
lational invariant and the gradient of the mean value of a
scalar field will effectively play the role of anisotropic pump-
ing. There is a significant difference between this problem
and the problem with isotropic pumping. Due to the chosen
direction in space, the odd order correlation functions do not
vanish.

We assume the velocity field to be Gaussian andd corre-
lated in time@1#. Therefore the statistics ofv is completely
determined by the pair-correlation function

^va~r 1 ,t1!v
b~r 2 ,t2!&5Vab~r 12!d~ t12t2!, ~4!

Vab~r !5V0d
ab2Kab~r !. ~5!

HereV0 is a large constant having the meaning of average
value ofv2, Kab is the eddy diffusivity tensor

Kab~r !5Dr2gFd112g

22g
r 2dab2r ar bG , ~6!

whered is the dimension of space, andg is parameter that
determines the scaling of the velocity pair-correlation func-
tion. The parameterg is supposed to be between zero and 2.
The powerlike behavior~6! is valid up to somer;L, where
L is the correlation length of velocity. Forr.L the correla-
tor Vab decreases and goes to zero asr→`. This means that
Kab(r )5V0d

ab for r@L. As we will see later, the precise
form of this decrease is not important. The relation between
constants is

L22g5
22g

D~d112g!
V0 . ~7!

We assume that the cutoff lengthL is d independent, so that
V0 explicitly depends on space dimensionality.

Our aim is to find the scaling exponent of the triple cor-
relation function deep inside convective interval, that is, for
r d!r!L, wherer d is a diffusion scale

r d
22g5

2k~22g!

D~d21!
. ~8!

The conditionr@r d implies that we can disregard diffusion
@8#.

From ~1! one can derive the equation for thenth-order
correlation function@1,2#

L̂^Q1•••Qn&50. ~9!

Here the operatorL̂ contains operators of both turbulent and
molecular diffusion

L̂5 1
2(
i , j

Vab~r i j !¹ i
a¹ j

b1k(
i

¹ i
2 . ~10!

We will see that the scaling of the pair-correlation function is
normal. For the three-point correlation function the presence
of zero modes of the operatorL̂ makes the scaling anoma-
lous, which is different from the 11g obtained from
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Kolmogorov-like estimates. The exception is the special case
when the scaling exponent of the velocity correlation func-
tion g is zero @2#. Note also that for the scaling exponent
equal to 2 the operatorL̂ has a singularity and special treat-
ment is needed@7#. Following @8#, we will calculate the
anomalous scaling exponent in the limit of larged. For
d→` the problem can be solved exactly. Then, finding cor-
rections in the next order over 1/d one can calculate the
anomalous exponent of the three-point correlator.

To calculate the triple correlation function one should
know the two-point correlator since it explicitly enters the
equation. The equation for the two-point correlation function
is

L̂~p! f ~r12!52L̂@~g•r1!~g•r2!#. ~11!

The operatorL̂(p) may be written as

L̂~p!5
D~d21!

22g
r 12d] r~r

d112g] r !, r d!r,L. ~12!

We should match the solution obtained atr,L with the
solution atr.L. For this region the operator has the form

L̂~p!5V0r
12d] r~r

d21] r !. ~13!

Since we will consider the three-point correlation function at
large d, we calculate the pair-correlation function in the
same limit~it can be found exactly as well!. The solution of
Eq. ~11! at r,L andd@1 that satisfies the boundary condi-
tion at r;L is

f ~r !5
g2L2

d F22g

2g
2
1

g S rL D g

1
1

2 S rL D 2G . ~14!

At r.L the pair correlation function is zero in the main
order of the 1/d expansion. Forr deep inside the convective
interval ther 2 term is small in comparison tor g. Therefore
we see that the scaling behavior of a two-point correlation
function is normal, as shown by Shraiman and Siggia@3#.
Note that ~14! is isotropic in the convective interval. The
anisotropic part has a scaling exponent larger thang and
therefore in the convective interval it is much smaller. Be-
sides, it has additional factor 1/d with respect to the isotropic
part.

For the three-point correlation function one can derive the
equation

L̂G5F12,31F13,21F23,1, ~15!

where

F12,35¹1
a f ~r 12!g

b@Kab~r 13!2Kab~r 23!#. ~16!

Since the preferable direction exists in the problem, thenG
depends on five independent variables in any dimension of
spaced.2. It is convenient to choose the set

G5G~r 12,r 13,r 23,r12•g,r23•g!. ~17!

However, it is impossible to find symmetric parametrization
because of the identityr121r131r2350.

Unfortunately, the number of variables is too large to
solve Eq.~15! exactly at arbitraryg andd. There are several
cases when the problem can be solved exactly: the cases of
g50 @9,10,3#, larged @8#, andg52 @11#. After solving the
problem exactly at these special values of parameters one
can develop the perturbation theory for the small deviations
from these values. In the cases of larged and g52 this
perturbation theory can be performed. The case ofg50 cor-
responds to the strongly degenerate perturbation theory. We
will solve Eq.~15! in the limit of larged, where perturbation
theory is regular. To do this one should keep in the operator
~10! only terms that are the largest at larged and solve the
equation. Then one can look for a correction due to a finite
value of the parameter 1/d. Justification of this procedure can
be found in@8#.

In variables~17! the main part of the operatorL̂ can be
written as

L̂05
d2D

22g(
i, j

r i j
12g] r i j . ~18!

For larged and r!L one can substitute~14! into the right-
hand side of~15!. The result is

F12,3
~0! 52

g2DL22g

22g
@~r12•g!r 12

g22~r 13
22g2r 23

22g!#. ~19!

Thus, in the first step of the iteration procedure we should
solve the equation

L̂0G05F12,3
~0! 1F13,2

~0! 1F23,1
~0! . ~20!

The solution can be found by integrating over the character-
istics of the operator~18!. An important question is that of
boundary conditions. We should supply Eq.~20! with the
boundary conditions at zero and infinity. However, this equa-
tion is of first order and only one condition can be satisfied.
Since we omitted the diffusion part of the operator~10!, we
should pose the only conditionG→0 as r→`. One can
show @8# that solution obtained in this way can be matched
with the diffusion region.

One can write the following solution of~20!, which sat-
isfies the above boundary condition:

G052
22g

gDd2E0
`

dtF12,3
~0! @ r̃ 12, r̃ 13, r̃ 23,~r12•g!,~r13•g!#

1 ~permutations!, ~21!

where

r̃ i j ~ t !5~r i j
g 1t !1/g. ~22!

The main contribution toG0 comes from the regiont&Lg.
Therefore we can use the expression~19! for F12,3

(0) and write
Lg as the upper limit of the integration. The precise form of
this cutoff is not important since the integral behaves loga-
rithmically on the upper limit. Finally, we get
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G05
g2L22g

gd2
~r12–g!E

0

Lg

dt~r 12
g 1t !122/g

3@~ t1r 13
g !2/g212~ t1r 23

g !2/g21#1 permutations.

~23!

The integral~23! cannot be calculated analytically for arbi-
trary g. However, we are interested inG in the convective
interval, that is, forr!L. There main contribution to~23!
comes from larget. Expanding the integrand overr /L, we
find the following result in the main logarithmic order:

G05
2~22g!

d
lnS Lr DZ0 , ~24!

wherer in the logarithm is of orderr i j and

Z05
g2L22g

2gd
@~r12•g!~r 13

g 2r 23
g !1~r13•g!~r 12

g 2r 23
g !

1~r23•g!~r 12
g 2r 13

g !# ~25!

Note thatZ0 is necessarily a zero mode of the operator~18!.
It is also worth mentioning thatZ0 scales asg11 and this is
the only zero mode of the operatorL̂0 with such scaling.

Now we should find a correction to~24! in the next order
over 1/d. To do this we should solve the equation

L̂0G152L̂1G0 . ~26!

Here L̂1 is the part of operator~10! that is proportional to
d. In Eq. ~26! we disregard terms that come from the right-
hand side of Eq.~15! since they do not contain the logarithm.
Solving Eq.~26!, we find for the main logarithmic term

G15
2~22g!2

d2
Z0ln

2S Lr D . ~27!

We can continue this iteration procedure and find the main
logarithmic subsequence. As a result, we obtain the series

G5Z0F11D lnS Lr D1
D2

2
ln2S Lr D1••• G2Z0

5Z0S Lr D
D

2Z0 , ~28!

where the anomalous exponentD that makes a deviation
from normal scaling is

D5
2~22g!

d
. ~29!

We see that the solution consists of two parts. The second
term on the right-hand side of~28! has normal scaling
g11. One can check that it is a partial solution of the inho-
mogeneous equation~15!. However, if it were alone, the so-
lution would not satisfy boundary conditions. To ensure it
we have the first term in~28!. One can see that this contri-
bution gives anomalous scaling with the exponent
g112D. This term is the solution of the homogeneous
equationL̂G50 and therefore is the zero mode of the opera-
tor L̂ @8,11,3#.

To conclude, we have shown that the three-point correla-
tion function has the scaling exponentg112D, which dif-
fers from naive dimensional estimates. This exponent was
analytically calculated in the leading 1/d order.

We are grateful to M. Chertkov, G. Falkovich, I.
Kolokolov, and V. Lebedev for fruitful discussions.
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Pis’ma Zh. Éksp. Teor. Fiz.61, 1012 ~1995! @JETP Lett.61,
1049 ~1995!#.

@11# K. Gawedzki and A. Kupiainen, Phys. Rev. Lett.75, 3834
~1995!.

54 4437BRIEF REPORTS


